sábado, 3 de marzo de 2012

FLUJO DE ENERGIA

Para que un ecosistema funcione, necesita de un aporte energético que llega a la biosfera en forma, principalmente, de energía luminosa, la cual proviene del Sol y a la que se le llama comúnmente flujo de energía (algunos sistemas marinos excepcionales no obtienen energía del sol sino de fuentes hidrotermales). 

El flujo de energía es aprovechado por los productores primarios u organismos compuestos orgánicos que, a su vez, utilizarán losconsumidores primarios o herbívoros, de los cuales se alimentarán los consumidores secundarios o carnívoros.

De los cadáveres de todos los grupos, los descomponedores podrán obtener la energía para lograr subsistir. De esta forma se obtendrá unflujo de energía unidireccional en el cual la energía pasa de un nivel a otro en un solo sentido y siempre con una pérdida en forma de calor.

Los diferentes niveles que se establecen (organismos fotosintéticos, herbívoros, carnívoros y descomponedores) reciben el nombre deniveles tróficos.

En los ecosistemas acuáticos en cada paso se pierde el 90% de la energía, y solo queda el 10% para el siguiente nivel trófico. En losterrestres el porcentaje que llega es aún menor.




BIBLIOGRAFÍA


Miller, T. (1994) Ecología y medio ambiente, México D.F.; Grupo editorial Iberoamérica

LEY DEL DIEZMO ECOLÓGICO:




 Hemos dicho que en la medida que la energía pasa de un nivel trófico a otro, la mayor parte de ella se pierde en la respiración. Es una consecuencia de la segunda ley de la termodinámica ya que en cada transferencia hay una perdida considerable de energía. Es lo que se conoce como la Ley del Diez por Ciento o la Ley de Diezmo Ecológico

Al aplicar las leyes de la termodinámica al flujo de energía y materia y a la formación de biomasa, se ha considerado que al pasar de un nivel trófico a otro se obtiene sólo el 10% de la energía que se obtuvo en el nivel precedente, lo que significa que, de un 100% de energía capturada, los organismos ocupan el 90% en su metabolismo, movimiento, transporte, etc. almacenando en su estructura un 10% del total consumido para ser aprovechado por el siguiente nivel trófico. El enunciado de este fenómeno dice en concreto: Sólo el 10% de la energía fijada en un nivel trófico es utilizado por el siguiente nivel.
Analizando este enunciado observamos que un productor aprovecha el 90% de la energía solar que fija para realizar sus funciones de sobrevivencia y en caso de servir de alimento a algún herbívoro esto sólo podrá utilizar el 10% de toda la energía que fijó el vegetal. A su vez el herbívoro utiliza el 90% de esa cantidad que recibió para sobrevivir, y en caso de servir de alimento a algún carnívoro éste, sólo podrá utilizar el 10% de la cantidad que recibió el herbívoro.
Hagamos un simple ejercicio.
Basándonos en la ley del diez por ciento, calculemos los kilocalorías (C) que cada nivel de la cadena alimentaria debe añadir a su contenido energético, considerando que cada uno se alimenta con el tejido de un organismo de nivel precedente.

Si el productor: elabora 1000 C de tejido.
El herbívoro aprovecha 100 C de energía en forma de tejido.
El carnívoro aprovecha 10 C de energía en forma de tejido.
El carnívoro final aprovecha 1 C de energía en forma de tejido.
¿Cuánto deben añadir cada nivel a su contenido energético para sobrevivir?

La respuesta exige cálculos que no vienen al caso, pero nos lleva a una conclusión importante y es que el limite superior práctico del numero de etapas que puede presentar una cadena trófica corresponde aproximadamente a 4 o 5 niveles, debido a que se pierde gran cantidad de energía en cada transferencia energética entre niveles, de suyo que al final no existe energía suficiente para mantener un organismo.
Igualmente nos da una clara idea de la cantidad de energía que debemos fijar en los productores para alimentar una población cada día más creciente.

BIBLIOGRAFIA

Gonzales A. y Medina N.(1999) Ecología. México: McGraw Hill.

viernes, 2 de marzo de 2012

Cadenas tróficas

CADENAS TRÓFICAS


es el proceso de transferencia de energía alimenticia a través de una serie de organismos, en el que cada uno se alimenta del precedente y es alimento del siguiente. También conocida como cadena alimentaria, es la corriente de energía y nutrientes que se establece entre las distintas especies de un ecosistema en relación con su nutrición.

  1. Cada cadena se inicia con un vegetal, productor u organismo autótrofo o sea un organismo que "fabrica su propio alimento" sintetizando sustancias orgánicas a partir de sustancias inorgánicas que toma del aire y del suelo, y energía solar (fotosíntesis), o mediante sustancias y reacciones químicas (quimiosintesis).
  2. Los demás integrantes de la cadena se denominan consumidores. Aquél que se alimenta del productor, será el consumidor primario, el que se alimenta de este último será el consumidor secundario que seria un carnívoro y un terciario que sería un omnívoro o un supercarnivoro de alguna forma. Son consumidores primarios, los herbívoros. Son consumidores secundarios los carnívoros, terciarios omnívoros y los cuaternarios necrófagos
  3. Existe un último nivel en la cadena alimentaria que corresponde a los descomponedores o degradadores. Son los Microorganismos. Éstos actúan sobre los organismos muertos, degradan la materia orgánica. Posteriormente por acción del ambiente, los microorganismos transforman nuevamente los nutrientes en materia orgánica disponible para las raíces o en sustancias inorgánicas devolviéndola al suelo (nitratos, nitritos, agua) y a la atmósfera (dióxido de carbono).


BIBLIOGRAFÍA:

Villee, C.(1995). Biología 7°Edición. México: Mc Graw-Hill Interamericana.

PRODUCCIÓN PRIMARIA


En ecología se conoce como producción primaria a la producción de materia orgánica que realizan los organismos autótrofos a través de los procesos de fotosíntesis o quimiosíntesis. La producción primaria es el punto de partida de la circulación de energía y nutrientes a través de las cadenas tróficas.
La expresión se refiere a la producción de materia orgánica a partir de materia inorgánica, tal como la realizan los organismos autótrofos. La biomasa generada primariamente se utiliza por los propios productores para la obtención de energía o para la construcción de sus estructuras. Una parte pasa a los consumidores primarios (aproximadamente un 10%), los llamados herbívoros o mejor fitófagos, que a su vez reelaboran las moléculas para fabricar sus propios componentes, por lo que los llamamos productores secundarios, o las degradan (catabolismo) para obtener energía. La energía se disipa a medida que la materia orgánica circula por los distintos niveles de la cadena trófica, a la vez que los átomos vuelven a formar moléculas inorgánicas como CO2 y NO3 (ion nitrato).


BILIOGRAFÍA:

recuperado de http://es.wikipedia.org/wiki/Producci%C3%B3n_primaria 

ciclo del calcio.wmv

Ciclo del Azufre

ciclo del fosforo

Ciclo Nitrógeno.wmv

Ciclos biogeoquímicos

CICLOS BIOGEOQUÍMICOS

CICLO DEL AZUFRE


El azufre forma parte de proteínas. Las plantas y otros productores primarios lo obtienen principalmente en su forma de ion sulfato (SO4 -2). Los organismos que ingieren estas plantas lo incorporan a las moléculas de proteína, y de esta forma pasa a los organismos del nivel trófico superior. Al morir los organismos, el azufre derivado de sus proteínas entra en el ciclo del azufre y llega a transformarse para que las plantas puedan utilizarlos de nuevo como ion sulfato.

Los intercambios de azufre, principalmente en su forma de dióxido de azufre (SO2), realizan entre las comunidades acuáticas y terrestres, de una manera y de otra en la atmósfera, en las rocas y en los sedimentos oceánicos, en donde el azufre se encuentra almacenado. El SO2 atmosférico se disuelve en el agua de lluvia o se deposita en forma de vapor seco. El reciclaje local del azufre, principalmente en forma de ion sulfato, se lleva a cabo en ambos casos. Una parte del sulfuro de hidrógeno (H2S), producido durante el reciclaje local del sulfuro, se oxida y se forma SO2.





CICLO DEL CALCIO


La lluvia combinada con el CO2 y los demás agentes atmosféricos, como el viento y la temperatura, reaccionan y meteorizan las rocas calizas y las rocas carbonaticas ígneas que contienen el calcio en grandes cantidades, arrastrando los compuestos del calcio a los suelos en donde las plantas toman el calcio para sus actividades metabólicas.

El calcio forma depósitos sedimentarios en las cuevas y por efecto de la erosión, este elemento pasa a los cuerpos de agua que se forman cuando caen las lluvias y el agua se filtra por las paredes y el techo de las cuevas.

el calcio va a parar a los ríos para que este elemento químico sea usado por moluscos de agua dulce como gasterópodos y bivalvos, por peces de agua dulce y algas unicelulares que pertenecen al agua dulce; estos animales al morir dejan el calcio para que se una a los sedimentos del rio, esto demuestra entonces que el ciclo del calcio es un ciclo sedimentario únicamente pues no hay naturalmente calcio gaseoso en la atmósfera.

En una cantidad reducida, el calcio sobrante es transportado por el río hacia el mar. En el mar, el calcio es asimilado por las algas unicelulares que son consumidas por el zooplancton o demás microorganismos  y estos finalmente consumidos por los peces de agua salada. También es consumido por bivalvos y corales para formar sus conchas y esqueletos respectivamente.

Cuando los peces, corales y bivalvos marinos como ostras y mejillones mueren, los esqueletos y las conchas se depositan en el fondo marino uniéndose a otros sedimentos listos para formar piedra caliza y después, emerger a la superficie por levantamiento geológico.



CICLO DEL CARBONO

El ciclo del carbono es el sistema de las transformaciones químicas de compuestos que contienen carbono en los intercambios entre biosfera, atmósfera, hidrosfera y litosfera. Es un ciclo biogeoquímico de gran importancia para la regulación del clima de la Tierra.

Este gas está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente un 5% de estas reservas de CO2 se consumen en los procesos de fotosíntesis, es decir que todo el anhídrido carbónico se renueva en la atmósfera cada 21 años.


La vuelta de CO2 a la atmósfera se hace cuando en la respiración, los seres vivos oxidan los alimentos produciendo CO2.
Los vegetales verdes que contienen clorofila toman el CO2 del aire y durante la fotosíntesis liberan oxígeno, además producen el material nutritivo indispensable para los seres vivos.





CICLO DEL FOSFORO

Los seres vivos toman el fósforo (P) en forma de fosfatos a partir de las rocas fosfatadas, que mediante meteorización se descomponen y liberan los fosfatos. Éstos pasan a los vegetales por el suelo y, seguidamente, pasan a los animales. Cuando éstos excretan, los descomponedores actúan volviendo a producir fosfatos.
Una parte de estos fosfatos son arrastrados por las aguas al mar, en el cual lo toman las algas, peces y aves marinas, las cuales producen guano, el cual se usa como abono en la agricultura ya que libera grandes cantidades de fosfatos; los restos de las algas, peces y los esqueletos de los animales marinos dan lugar en el fondo del mar a rocas fosfatadas, que afloran por movimientos orogénicos.
De las rocas se libera fósforo y en el suelo, donde es utilizado por las plantas para realizar sus funciones vitales. Los animales obtienen fósforo al alimentarse de las plantas o de otros animales que hayan ingerido. En la descomposición bacteriana de los cadáveres, el fósforo se libera en forma de ortofosfatos (H3PO4) que pueden ser utilizados directamente por los vegetales verdes, formando fosfato orgánico (biomasa vegetal), la lluvia puede transportar este fosfato a los mantos acuíferos o a los océanos. 



CICLO DEL NITROGENO


El primer paso en el ciclo es la fijación (reducción) del nitrógeno atmosférico a formas distintas susceptibles de incorporarse a la composición del suelo o de los seres vivos, como el ion amonio o los iones nitrito o nitrato (aunque el amonio puede ser usado por la mayoría de los organismos vivos, las bacterias del suelo derivan la energía de la oxidación de dicho compuesto a nitrito y últimamente a nitrato); y también su conversión a sustancias atmosféricas químicamente activas, como el dióxido de nitrógeno , que reaccionan fácilmente para originar alguna de las anteriores.

Fijación abiótica. La fijación natural puede ocurrir por procesos químicos espontáneos, como la oxidación que se produce por la acción de los rayos, que forma óxidos de nitrógeno a partir del nitrógeno atmosférico.

Fijación biológica de nitrógeno. Es un fenómeno fundamental que depende de la habilidad metabólica de unos pocos organismos, llamados diazótrofos en relación a esta habilidad, para tomar nitrógeno atmosférico y reducirlo a nitrógeno orgánico.

La fijación biológica la realizan tres grupos de microorganismos diazotrofos:

  • Bacterias gramnegativas de vida libre en el suelo.
  • Bacterias simbióticas de algunas plantas.
  • Cianobacterias de vida libre o simbiótica. Las cianobacterias de vida libre son muy abundantes en el plancton marino y son los principales fijadores en el mar.



La amonificación es la conversión a ion amonio del nitrógeno que en la materia viva aparece principalmente como grupos amino.
Los animales, que no oxidan el nitrógeno, se deshacen del que tienen en exceso en forma de distintos compuestos. Los acuáticos producen directamente amoniaco, que en disolución se convierte en ion amonio.
Los terrestres producen urea, que es muy soluble y se concentra fácilmente en la orina; o compuestos nitrogenados insolubles como la guanina y el ácido úrico, que son purinas, y ésta es la forma común en aves o en insectos y, en general, en animales que no disponen de un suministro garantizado de agua.
El nitrógeno biológico que no llega ya como amonio al sustrato, la mayor parte en ecosistemas continentales, es convertido a esa forma por la acción de microorganismos descomponedores.

CICLO: Algunas bacterias convierten amoniaco en nitrito y otras transforman este en nitrato. Una de estas bacterias (Rhizobium) se aloja en nódulos de las raíces de las leguminosas (alfalfa, alubia, etc.) y por eso esta clase de plantas son tan interesantes para hacer un abonado natural de los suelos.
Donde existe un exceso de materia orgánica en el mantillo, en condiciones anaerobias, hay otras bacterias que producen desnitrificación, convirtiendo los compuestos de N en N2, lo que hace que se pierda de nuevo nitrógeno del ecosistema a la atmósfera

.






BIBLIOGRAFÍA:

recuperados de http://es.wikipedia.org/wiki/Ciclo_del_azufre

                           http://es.wikipedia.org/wiki/Ciclo_del_f%C3%B3sforo

                            http://es.wikipedia.org/wiki/Ciclo_del_calcio

                            http://es.wikipedia.org/wiki/Ciclo_del_nitr%C3%B3geno

                            http://es.wikipedia.org/wiki/Ciclo_del_carbono